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1. INTRODUCTION

The mathematical structure of our proposed modulation/demodulation scheme
is shown. A general equation for the spectral density of a Direct Sequence
Spread Spectrum Signal is derived. The Spectral Density of the 11 chip
Barker sequence is calculated and pletted. An expression for the
demodulated decision variable is given which can be used for further systenm
rerformance calculations.

2. DIFFERENTTAT, QUADRATURE PHASE MODULATION

2.1. Transmission

Any real valued signal who's frequency content is concentrated around a
- carrier, fg, can be expressed:

S5(t) = a(t)+Cos(2rf-t + aQ(t)) [1]
For ease of mathematical manipulation this can be expressed in complex
notation:

S(t) = RE[U(t) exp(j2rfct)] (2]

Where:

U(L) =: a(t)exp(iQ) is the Lowpass representation of the signal.
With Digital Phase Modulation the Lowpass function is given by:

U(t) =
n

g

eXp (jfn) *g(t-nT) [3]
]
Where:

T is the symbol period of the transmitted information.

n is an index representing the nth transmitted symbol.

g(t) is the baseband modulating pulse with a duration T.

exp(ifin) i= the Information Vector, In, With Quadrature modulation
four phase positions are transmitted e{ w/4, -T/4, 3n/4, -3m/4 ).
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J Complex Plane

* In = exp(jQn)

fn

Figure 1 Information Vector in the Complex Plane

To ¢give more insight into the transmitter's functional block diagram,
equation [3] can be written as:

U(t) =
11

(Irn + jIin)*g(t-nT) [4]
-

[ -

Where:
Irn €{1,-1} is the real axis projection of the Vector Ip.
Iin €{1,-1} is the imaginary axis projection of the Vector In.

Substitution of [4] into [2] gives the following:

s =]
S(t) = Z [Irn+g(t-nT)Cos(27fct) - Iin-g(t-nT)Sin(27fct)) [5]
n = -

Equation [5] lends itself to an easy interpretation. The transmitted phase
modulated digital signal can ke seen as the sum of two carriers, with a 90
degree offset. The amplitude of each carrier is multiplied by the "wave
shaping pulse" g(t), which determines the signal's spectral characteristics,
and the Information symbol, Irn and Iip €{1,-1}, which determines the symbol
phase state of the transmitted Information Vector. It is noted that due to
g(t) the phase of the transmitted signal could change often during a symbol
period, for example using Spread-Spectrum Modulation, but this is not
dependent upon the information vector and therefore does not determine the
symbol phase state.
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In order to easze the receiver implementation, within a quasi-~stationary
channel, Differential Phase Modulation is implemented. 1In this case the
absolute transmitted symbol phase is a function of the previcus symbol phase
state. The symbol phase encoding is as follows:

fin = dfin + fn-1 ) (6]
Where:

din is the differential symbol phase shift, defined by table I.

fin i the transmitted symbol phase.

{in-1 is the previocus symbol (T delayed) transmitted symbol phase,

The differential symbol phase shift transmitted is derived from the data
source following the data mapping of table I.

TABLE I: Data dikit to Differential Phase Mapping

dibit pattern (Left Sent First) dan
8]

00
01 n/2
11 7

10 -n/2

For clarity an example of the various signals for the transmission of
Differential Quadrature Phase Modulation is shown. It is noted, in this
example, that the "wave shaping pulse" gt} is given as:

g(t)
1
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Index n = 1 2 3 4 5 (] 7 8 g 10 11 12 13 14 .......
Transmitted Data (Left sent first)
00 01 11 00 10 01 10 o1 01 11 10 01 11 01 .......
Relative Phase
g - ‘
/2 ,_Ih I L
-n/2 =0 i Time
-7
Absolute Phase (Negative Symbol Time Phase is assumed 7/4)
3r/4
iy [_T— —
- n/4 t=0 r_—— Time
-3n/4 I | 1
Irn One Symbol Time
‘ L
+1 —
-1 ‘ — Time
t=0
Iip
+1
-1 Time
t=0

Figure 2 Differential Quadrature Modulation Waveforms
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0f course the output signal will be band-limited, which iz not shown in
figure 2. 1In figure 3 a functional block diagram can be seen. Note that
eventual band limjiting of the output =ignal is shown as a low pass filter
F(f) in each real and imaginary axis.

Irn+g{t-nT) Medium
g(t)-l-F(f)-Balanced
Modulator
Irpn*4d(t) 1
Cos (27fet)
Local Osc.
hifa)
Data Differential — [ — Power
Data ~ Symbol |H Phase Driver
Source Mapping| |Encoder ] r/2
Phase
Tin=-4(t) -
=Sin(2rfct)
g(t) M F({f) qHBalanced
Modulator

Figure 3 The DQPSK Block Diagram

Two bits from the Data Source, dibit n, are mapped by the Data Symbol
Mapping Block according to Table I. The differential phase, dn, and the
previous absolute phase, 0n-1, are used to calculate the present transmitted
phase, 0n, by the Differential Phase Encoder following equation [6]. The
output of the Differential Phase Encoder are two dirac impulses, §(t),
weighted by the real and imaginary components of the information Vector Ip.
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2.1.1. Direct Sequence Spread Spectrum

At this point we have DOPSK transmission in which the spectral bandwidth is
determined by g(t) and the spectral limiting function F(f). In the example
of figure 2, g(t) is a unit pulse with a duration of one dibit period T.
This would be the case with "normal" DOPSK modulation. In Direct Sequence
Spread Spectrum, DSSS, the transmitted bandwidth is larger than the
"information bandwidth". This is accomplished by having transitions in the
output variable, the phase in this case, which are shorter in duration than
the information symbel time. This can be accomplished, without any changes
with the block diagram of figure 3, by defining g(t) as the spread spectrum
sequence:

g(t)

0 et =

= Z Xk'pP(t-krg) [7]
k=1

Where:
g(t) 1s the spread spectrum sequence,
p(t) is a "chip" pulse:

p(t)
1

Tg

Tec is the chip duration such that N = T/7c is an integer.
X €{1,-1} and is the kth chip's coefficient.

The spread spectrum sequence, g(t), is defined by the coefficient vector
Xk. In our case the N = 11 chip Barker sequence is used:

Index k = 1 2 3 4 5 6 7 8 9 10 11
Xk = [+ -1 1 1 -1 1 1 1 -1 -1 -1]

The spectrum spreading is characterized by the parameter N. This gives the
number of chips within one symbol period. This is also how much the
spectrum bandwidth is increased relative to the no spreading case N=1 (chip

= symbol).
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2.1.2. Output Spectral Density

The output spectral density of a process with a lowpass representation,
U(t), 1is given by the Fourier Transformation of the autocorrelation
function:

guu{r) <-—-> guu(f) = r guu(r) -exp(-j2rr)dr [8]
J
-t

Where:

guu(r) = FE[U(t)+U*(t)] is the complex autocorrelation of the process
U(t) and * signifies the complex conjugate.

U(t) is a cyclostationary process, its statistics are periodic in T, and
therefore, as shown by Proakis [ref 1], the average autocorrelation
function, ¢uu(r), of the process U(t) given by equation [3] is:

o
guu(r) = 1/T+Z ¢ss(m) *¢gg (7-nT) £9]
m = -
Where:

¢ss(m) is the conmplex autocorrelation of the Information Symbol
Vector, In, defined as:

¢ss(m) = YE{T*n+In+mn] [10]
(* signifies complex conjugation)

¢gg(r) is the time autocorrelation of the function g(t).

Substitution of [9] into [8] gives the output spectral density as:
fuu(f) = 1/T+iG(f)|% +das(f) [11)
Where:

|G(f) | is the magnitude of the Fourier Transform of g(t) .-
¢s5(f) is the Spectral Density of the Information Vector given by:

¢ss(f) =
m

¢ss(m) rexp(—j2rf.-mT) (12}

-0

ey a
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Expressing In in real and imaginary components and substitution into [10]
gives:

¢ss(m) = k[¢rr(m) + ¢ii(m) - jéri(m) + je¢ir(m)] [13]
Since the data source is random, as are the dibits which determine the sign

of the real and imaginary -~ Information Vector components, these
crosscarrelation products are zero:

gri(m) = 0 for all m
gir(m) = ©

Also real and imaginary axis autoceorrelation functions are equal since the
statistics are the same for each axis:

prr(m) = ¢ii(m) for all m

Since the data sources random binary bits, previous and present dibits are
random. This means that the autocorrelation is:

¢rr(m) = dmo
Where §jk is the Kronecker delta such that:

55k = 1 j=k
60 3 Ak
Substitution of the correlation statistics given into [13] gives:
¢ss(m) = ¢rr(m) = émo [14]
It is noted that due to [1l4] the autocorrelation of the output given in [9],
guu(r), is only a function eof the real (or imaginary) component of the

Information Vector and the pulse g(t).

Substitution of [14] inte [12] gives the Spectral Density of the Information
Vector as:

fss(f) = 1
From [1ll1l] and &%zs(f) = 1 the Spectral Density of the Output Process is
found:

guu(f) = 1L/T+|G(f)|? [15]
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The next step is to find the function |G(f)| which uniquely determines the
output Spectral Density. The function g(t) given in {7] can be written in

another form!

N N
g(t) = Z Xk*p{t-krg) = p(t) * Z Xk+é(t-kre) [16]
k=1 k=1
Where:
* denotes the convolution operation:
(-4}

2(t) * h(t) = J hi{rt)+z{t-r)ar
—e

Looking at [16], imposing the relationship between time domain convolution
‘and frequency domain multiplication, ¢! (f)}* can be expressed as the
multiplication of two terms:

bg(f) ]2 = |P(£) |2+ |X(£)}? [17]

Where:
IP(£)} is the magnitude of the Fourier Transformation of the chip

pulse p(t).

!X(£f)! is the magnitude of the Fourier Transformatien of x(t) which
iz given by:

N
x(t) = I Xk-6(t-kre) [18]
k=1

Noting from the Fourier Transformation that the relationship holda:

X(-t) <——=> X*(f) [20]
Since [X(f)|? = X(f)+X*(f), using [20] we have:
x(t) * x(-t) <-——-> X|(£);? [21]

Substitution of [18] into [21] gives:

0
K K [

x(t) * x(-t) == Z XkeXi- §(t+a ~kre)sd(a-irg)da [22)
k=l i=1 J
]

10
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Using the fact that §(e-ire) has unity weight only for o = ire, else zero,
equation [22] can be simplified:

K K
x(t) * x(-t) == L Xk+Xis8(t~(k-1i) Ta) [23]
k=1 i=1

Taking the Fourier Transformation of [23] gives the Spectral Density of the
Spread-Spectrum Code Sequence:

K K
1X(f)yt> = = Z Ek+Xivexp(~j2nf(k-i)re) [24]
k=1 i=1 :

The first term in the double addition of [24], k=i=1, is a DC component
which can be separated, combining negative and positive exponential terms
gives:

K K k-1
[Z(f)]* = = X*k + 2+% 2 Xk*XisCos (4wt (k-1)71g) [25]
k=1 k=2 1i=1

With the 11 chip Barker Code, Xk, = [1L -1 1 1 -1 1 1 1 -1 -1 =171,
substitution into [25] gives a further simplification:

5
IX(£) 12 = 11 - 2£z Cos (47f x krg) [26)]
=1

Using the fact the chip pPulse, given in [7], p(t) <-——-> P(f}) is given by:
[P(f)| = T+Sinc(7mfre)
The Output Spectral Density, from [15], is:

5
fuu(f) = T+Sinc? (fra)+[11 - 2+% Cos(4mfkrc) ] [27]
k=1

In figure 4 a plot of the Output Spectral Density is shown. It is noted
that the Spectral "Side-Lobes" of the Sinc function are quite significant.
Spectral side-lobe suppression will be necesszary using the Low Pass filters
F(f) shown in the figure 3. It is interesting to note that the spectrum is
"smooth". This is due to the Barker sequence and is coupled with its unity
bounded non-periodic and odd-periodic autocorrelation sidelobe properties.

11




JEM LT TP AWM'O0 MCR OTIRTEND S DY O TuWTRESnT?

€

cl

P 3HN9T 4
ATDR/TC
33/3 AJNINOIYA 0IZITYWHON

05—

(4) nng

J

Gt

H\_wH::M.>hHmeD TWHLEDADS HIMOd LNd1lnN0 U3ZITYWHON

ATD/EP S




2.

Doc: IEEE 802.4L/89~1§

2. Reception
The transmitted signal has been given in [3] and is repeated here:
[= 4]
U(t) = £ In+g(t-nT) [28]
n = =

The time-invariant channel (between two symbol intervals) is modeled as:

L
hir) = & Bi*86(r-7i) -exp(-jai) [29]
i=1
Where:

Bi is the ith path gain, with probability density function, pdf, which
is Rayleigh distributed.

L is the number of paths.

ai is the ith path phase, with a unit pdf within [0,27].

The received signal is the convolution of [28] with [29] giving:

w I,
r(t) = © = In+Bivexp(~jai) +g(t-nT-7j) [30]
n=-«0 ji=]

Let the receiver consist of a "Matched Filter" and a symbol delay T. The
impulse response of the Matched Filter is given by:

hfilter(t) = g(T-t) [31)

From the received signal r(t) given in (30]) the present, n=0, and previous
symbol, n=~1, shall be used in the calculations for intersymbol interference
effects. (It is assumed that the delay of the channel is much less than twe
symbhol periods and maltiple symbol interference can be neglected) .,

For convenience the first path, which is chosen for detection by the
receiver, of the channsl is set with 7+ = 0. The complex signal under
investigation is:

L L
THE) = I TosPi-exp(-jai)-g(t-1i) + & I-1-fisexp(-Jjai) +g(t+T-7i) [32]
1=1 i=1

13
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/
g(T-t) M(t) /
r*(t) ——f / M(T)
Input Sample
at t=T
Figure 5 Matched Filter (Correlation) Receiver

In order to caleulate M(t) it is noted that the receiver forms a linear
system and superposition applies. Therefore each summation term in equation
[(32] can be applied to the system separately, adding each resulting output
te give the total response. Applying the terms of r'(t) containing the I
complex Information Vector gives:
L
Mo(t) = g(T-t) * g(t)+Io+f1eexp(-jar) +_EzIa-ﬁi-exP(-jai)-q(tHTi) * g(T~t)
l:

Taking the value of Mo(t) at the sampling moment T gives:

[+ #]
L
Mo(T) = TB1-exp(-jai) +kE Io-ﬁi-exp(-jai)-J glo-1i)+g(a)da [33]
=2
=)

Where the first chosen path, with zero delay, has been separated from the
expression. The integral in [33] is the time autocorrelation of the spread
spectrum signal. From the expression for g(t) in [7] for 71 = o the
autocorrelation equals T which is the factor of the first term.

Since g(t) has a duration of T, as shown in figure, 6 the autocorrelation
function can be expressed as:

o T
- RU(T) = J g(a-7)+g{a)da = J gla-1}+g(o)da [34]
-0 T L g((t)
B t
Only the cross areas g(t-r1) T
contribute to the integral,.
t

-
Figure & Spread-Spectrum Sequence Autocorrelation

14
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Mo (T) can now be expressed as:
L

Mo(T) = T:f1-To-exp(-jal) + To:Z fi-exp(-jai)-R"(ri) [35]
1=

Using the same arguments as given above, the sampled output due to the terms
in r'(t) containing the Complex Information Vector I.q gives:
L
M1(T) = I-1+2 Bi+R(7i) [36]
i=1
Wheare:
o

R(r} = J g(a+tT-r)+g(a)da = | g(a~1)+g(a)da

o—

-0

Summation of [35] and [36] gives the total output as sample moment T:

L
M(T) = Io*[T-Alrexp(-ja1) +'Ezﬂi-exp(-jai)-R"(ri)] +
1:
L [37)
I-1:% Ai-exp(-jai)-R(r1i)

i=2

Due to the choice of the 11 chip Barker sequence and its unity bounded odd-
periodic correlation function, the autocorrelation terms in [37)] are bounded
bry:

R"(1) = R(7T) < Te [38]

Which is the area under one chip pulse.

15
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Substitution of the upper bound of [38] into [37] gives:

M(T) = Io+[T-fleexp(-jal) + Bere] + I_q+Berg [38]
Where:
L
B = |Blexp(-j%) = T Bi-exp(~jai)
i=2

It is noted that the second term of ecuation [38] is the intersymbol
interference term of the previous (I-1) information symbol with the present
(Io). One can see how Spread-Spectrum Modulation is robust with respect to
Multipath Delay. The received path's strength is multiplied by a factor T
while the interference terms by 7e. The ratic, T/7f = N, being the
"Processing Gain" of the system.

A symbol delay, T, 1s now added at the output of the matched filter
receiver. At the present sample moment M(T) the previous sample output,
M(0}, is available. Note that M(0) has is the same as [38]) except that the
Information Vectors are delayed one symbol:

M(0) = I-1+[T+B1rexp(-joal) + Berg] + I-2+B+71¢C {39]
/
g(T-t) M(t) /
r'(t) > —> / M(T)
Input Sample
at t=T £1
zi+2*2 Phase
Delay Detect
T
22
> M{O) Decision
Variable
Phasze to
dibit
Mapping

Figure 7 Differential Phase Demodulation Receiver

16
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Performing the complex conjugate multiplication shown in Figure 7 gives:
M(T)-M*(0) = (B1+T)?+exp[j(fl0 - N-1)] + Intersymbol Interferance [40]
Taking the phase of [40) gives the decision variable, the differential phase
output:

dilg = o — §1=]1 + Intersymbol Phase Interference

Which gives the output variable needed in order to determine, following the
dl to dibit mapping of Table I, the transmitted data dibit.

17
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